Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Sci Rep ; 14(1): 10036, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693432

RESUMEN

Parkinson's disease is a progressive neurodegenerative disorder in which loss of dopaminergic neurons in the substantia nigra results in a clinically heterogeneous group with variable motor and non-motor symptoms with a degree of misdiagnosis. Only 3-25% of sporadic Parkinson's patients present with genetic abnormalities that could represent a risk factor, thus environmental, metabolic, and other unknown causes contribute to the pathogenesis of Parkinson's disease, which highlights the critical need for biomarkers. In the present study, we prospectively collected and analyzed plasma samples from 194 Parkinson's disease patients and 197 age-matched non-diseased controls. N-acetyl putrescine (NAP) in combination with sense of smell (B-SIT), depression/anxiety (HADS), and acting out dreams (RBD1Q) clinical measurements demonstrated combined diagnostic utility. NAP was increased by 28% in Parkinsons disease patients and exhibited an AUC of 0.72 as well as an OR of 4.79. The clinical and NAP panel demonstrated an area under the curve, AUC = 0.9 and an OR of 20.4. The assessed diagnostic panel demonstrates combinatorial utility in diagnosing Parkinson's disease, allowing for an integrated interpretation of disease pathophysiology and highlighting the use of multi-tiered panels in neurological disease diagnosis.


Asunto(s)
Biomarcadores , Enfermedad de Parkinson , Putrescina , Humanos , Enfermedad de Parkinson/diagnóstico , Masculino , Biomarcadores/sangre , Femenino , Anciano , Persona de Mediana Edad , Putrescina/análogos & derivados , Estudios Prospectivos , Estudios de Casos y Controles
2.
iScience ; 27(3): 109083, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361627

RESUMEN

Exercise mediates tissue metabolic function through direct and indirect adaptations to acylcarnitine (AC) metabolism, but the exact mechanisms are unclear. We found that circulating medium-chain acylcarnitines (AC) (C12-C16) are lower in active/endurance trained human subjects compared to sedentary controls, and this is correlated with elevated cardiorespiratory fitness and reduced adiposity. In mice, exercise reduced serum AC and increased liver AC, and this was accompanied by a marked increase in expression of genes involved in hepatic AC metabolism and mitochondrial ß-oxidation. Primary hepatocytes from high-fat fed, exercise trained mice had increased basal respiration compared to hepatocytes from high-fat fed sedentary mice, which may be attributed to increased Ca2+ cycling and lipid uptake into mitochondria. The addition of specific medium- and long-chain AC to sedentary hepatocytes increased mitochondrial respiration, mirroring the exercise phenotype. These data indicate that AC redistribution is an exercise-induced mechanism to improve hepatic function and metabolism.

3.
Cancers (Basel) ; 16(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398103

RESUMEN

Prostate cancer represents a significant health risk to aging men, in which diagnostic challenges to the identification of aggressive cancers remain unmet. Prostate cancer screening is driven by the prostate-specific antigen (PSA); however, in men with benign prostatic hyperplasia (BPH) due to an enlarged prostate and elevated PSA, PSA's screening utility is diminished, resulting in many unnecessary biopsies. To address this issue, we previously identified a cleaved fragment of Filamin A (FLNA) protein (as measured with IP-MRM mass spectrometry assessment as a prognostic biomarker for stratifying BPH from prostate cancer and subsequently evaluated its expanded utility in Caucasian (CA) and African American (AA) men. All men had a negative digital rectal examination (DRE) and PSA between 4 and 10 ng/mL and underwent prostate biopsy. In AA men, FLNA serum levels exhibited diagnostic utility for stratifying BPH from patients with aggressive prostate cancer (0.71 AUC and 12.2 OR in 48 men with BPH and 60 men with PCa) and outperformed PSA (0.50 AUC, 2.2 OR). In CA men, FLNA serum levels also exhibited diagnostic utility for stratifying BPH from patients with aggressive prostate cancer (0.74 AUC and 19.4 OR in 191 men with BPH and 109 men with PCa) and outperformed PSA (0.46 AUC, 0.32 OR). Herein, we established FLNA alone as a serum biomarker for stratifying men with BPH vs. those with high Gleason (7-10) prostate cancers compared to the current diagnostic paradigm of using PSA. This approach demonstrates clinical actionability of FLNA alone without the requirement of prostate volume measurement as a test with utility in AA and CA men and represents a significant opportunity to decrease the number of unnecessary biopsies in aggressive prostate cancer diagnoses.

4.
Sci Rep ; 14(1): 1729, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242919

RESUMEN

Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. 13C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD+ regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.


Asunto(s)
Mitocondrias , NAD , Humanos , NAD/metabolismo , Mitocondrias/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Quinonas/metabolismo , Fosforilación Oxidativa , Succinatos/metabolismo , Hipoxia/metabolismo , Oxidación-Reducción
5.
bioRxiv ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37503007

RESUMEN

Activating brown adipose tissue (BAT) improves systemic metabolism, making it a promising target for metabolic syndrome. BAT is activated by 12, 13-dihydroxy-9Z-octadecenoic acid (12, 13-diHOME), which we previously identified to be inversely associated with BMI and which directly improves metabolism in multiple tissues. Here we profile plasma lipidomics from a cohort of 83 people and test which lipids' association with BMI replicates in a concordant direction using our novel tool ScreenDMT, whose power and validity we demonstrate via mathematical proofs and simulations. We find that the linoleic acid diols 12, 13-diHOME and 9, 10-diHOME both replicably inversely associate with BMI and mechanistically activate calcium fluxes in mouse brown and white adipocytes in vitro, which implicates this pathway and 9, 10-diHOME as candidate therapeutic targets. ScreenDMT can be applied to test directional mediation, directional replication, and qualitative interactions, such as identifying biomarkers whose association is shared (replication) or opposite (qualitative interaction) across diverse populations.

6.
J Physiol ; 601(11): 2165-2188, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36814134

RESUMEN

Exercise-induced perturbation of skeletal muscle metabolites is a probable mediator of long-term health benefits in older adults. Although specific metabolites have been identified to be impacted by age, physical activity and exercise, the depth of coverage of the muscle metabolome is still limited. Here, we investigated resting and exercise-induced metabolite distribution in muscle from well-phenotyped older adults who were active or sedentary, and a group of active young adults. Percutaneous biopsies of the vastus lateralis were obtained before, immediately after and 3 h following a bout of endurance cycling. Metabolite profile in muscle biopsies was determined by tandem mass spectrometry. Mitochondrial energetics in permeabilized fibre bundles was assessed by high resolution respirometry and fibre type proportion was assessed by immunohistology. We found that metabolites of the kynurenine/tryptophan pathway were impacted by age and activity. Specifically, kynurenine was elevated in muscle from older adults, whereas downstream metabolites of kynurenine (kynurenic acid and NAD+ ) were elevated in muscle from active adults and associated with cardiorespiratory fitness and muscle oxidative capacity. Acylcarnitines, a potential marker of impaired metabolic health, were elevated in muscle from physically active participants. Surprisingly, despite baseline group difference, acute exercise-induced alterations in whole-body substrate utilization, as well as muscle acylcarnitines and ketone bodies, were remarkably similar between groups. Our data identified novel muscle metabolite signatures that associate with the healthy ageing phenotype provoked by physical activity and reveal that the metabolic responsiveness of muscle to acute endurance exercise is retained [NB]:AUTHOR: Please ensure that the appropriate material has been provide for Table S2, as well as for Figures S1 to S7, as also cited in the text with age regardless of activity levels. KEY POINTS: Kynurenine/tryptophan pathway metabolites were impacted by age and physical activity in human muscle, with kynurenine elevated in older muscle, whereas downstream products kynurenic acid and NAD+ were elevated in exercise-trained muscle regardless of age. Acylcarnitines, a marker of impaired metabolic health when heightened in circulation, were elevated in exercise-trained muscle of young and older adults, suggesting that muscle act as a metabolic sink to reduce the circulating acylcarnitines observed with unhealthy ageing. Despite the phenotypic differences, the exercise-induced response of various muscle metabolite pools, including acylcarnitine and ketone bodies, was similar amongst the groups, suggesting that older adults can achieve the metabolic benefits of exercise seen in young counterparts.


Asunto(s)
Quinurenina , Triptófano , Adulto Joven , Humanos , Anciano , Quinurenina/metabolismo , Triptófano/metabolismo , Ácido Quinurénico , NAD/metabolismo , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología
7.
Microbiome ; 11(1): 9, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639805

RESUMEN

BACKGROUND: Celiac disease (CD) is an autoimmune disorder triggered by gluten consumption. Almost all CD patients possess human leukocyte antigen (HLA) DQ2/DQ8 haplotypes; however, only a small subset of individuals carrying these alleles develop CD, indicating the role of environmental factors in CD pathogenesis. The main objective of this study was to determine the contributory role of gut microbiota and microbial metabolites in CD onset. To this end, we obtained fecal samples from a prospective cohort study (ABIS) at ages 2.5 and 5 years. Samples were collected from children who developed CD after the final sample collection (CD progressors) and healthy children matched by age, HLA genotype, breastfeeding duration, and gluten-exposure time (n=15-16). We first used 16S sequencing and immunoglobulin-A sequencing (IgA-seq) using fecal samples obtained from the same children (i) 16 controls and 15 CD progressors at age 2.5 and (ii) 13 controls and 9 CD progressors at age 5. We completed the cytokine profiling, and plasma metabolomics using plasma samples obtained at age 5 (n=7-9). We also determined the effects of one microbiota-derived metabolite, taurodeoxycholic acid (TDCA), on the small intestines and immune cell composition in vivo. RESULTS: CD progressors have a distinct gut microbiota composition, an increased IgA response, and unique IgA targets compared to healthy subjects. Notably, 26 plasma metabolites, five cytokines, and one chemokine were significantly altered in CD progressors at age 5. Among 26 metabolites, we identified a 2-fold increase in TDCA. TDCA treatment alone caused villous atrophy, increased CD4+ T cells, Natural Killer cells, and two important immunoregulatory proteins, Qa-1 and NKG2D expression on T cells while decreasing T-regulatory cells in intraepithelial lymphocytes (IELs) in C57BL/6J mice. CONCLUSIONS: Pediatric CD progressors have a distinct gut microbiota composition, plasma metabolome, and cytokine profile before diagnosis. Furthermore, CD progressors have more IgA-coated bacteria and unique targets of IgA in their gut microbiota. TDCA feeding alone stimulates an inflammatory immune response in the small intestines of C57BJ/6 mice and causes villous atrophy, the hallmark of CD. Thus, a microbiota-derived metabolite, TDCA, enriched in CD progressors' plasma, has the potential to drive inflammation in the small intestines and enhance CD pathogenesis. Video Abstract.


Asunto(s)
Enfermedad Celíaca , Microbioma Gastrointestinal , Inmunoglobulina A , Animales , Preescolar , Humanos , Ratones , Atrofia , Enfermedad Celíaca/genética , Citocinas , Glútenes , Metaboloma , Ratones Endogámicos C57BL , Estudios Prospectivos
8.
Drugs Real World Outcomes ; 9(3): 359-375, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35809196

RESUMEN

BACKGROUND: The COVID-19 pandemic generated a massive amount of clinical data, which potentially hold yet undiscovered answers related to COVID-19 morbidity, mortality, long-term effects, and therapeutic solutions. OBJECTIVES: The objectives of this study were (1) to identify novel predictors of COVID-19 any cause mortality by employing artificial intelligence analytics on real-world data through a hypothesis-agnostic approach and (2) to determine if these effects are maintained after adjusting for potential confounders and to what degree they are moderated by other variables. METHODS: A Bayesian statistics-based artificial intelligence data analytics tool (bAIcis®) within the Interrogative Biology® platform was used for Bayesian network learning and hypothesis generation to analyze 16,277 PCR+ patients from a database of 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR methods during the first pandemic year in Central Florida. This approach generated Bayesian networks that enabled unbiased identification of significant predictors of any cause mortality for specific COVID-19 patient populations. These findings were further analyzed by logistic regression, regression by least absolute shrinkage and selection operator, and bootstrapping. RESULTS: We found that in the COVID-19 PCR+ patient cohort, early use of the antiemetic agent ondansetron was associated with decreased any cause mortality 30 days post-PCR+ testing in mechanically ventilated patients. CONCLUSIONS: The results demonstrate how a real-world COVID-19-focused data analysis using artificial intelligence can generate unexpected yet valid insights that could possibly support clinical decision making and minimize the future loss of lives and resources.

9.
Int J Mol Sci ; 23(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35628137

RESUMEN

A balanced omega (ω)-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio has been linked to metabolic health and the prevention of chronic diseases. Brown adipose tissue (BAT) specializes in energy expenditure and secretes signaling molecules that regulate metabolism via inter-organ crosstalk. Recent studies have uncovered that BAT produces different PUFA species and circulating oxylipin levels are correlated with BAT-mediated energy expenditure in mice and humans. However, the impact of BAT ω-6/ω-3 PUFAs on metabolic phenotype has not been fully elucidated. The Fat-1 transgenic mice can convert ω-6 to ω-3 PUFAs. Here, we demonstrated that mice receiving Fat-1 BAT transplants displayed better glucose tolerance and higher energy expenditure. Expression of genes involved in thermogenesis and nutrient utilization was increased in the endogenous BAT of mice receiving Fat-1 BAT, suggesting that the transplants may activate recipients' BAT. Using targeted lipidomic analysis, we found that the levels of several ω-6 oxylipins were significantly reduced in the circulation of mice receiving Fat-1 BAT transplants than in mice with wild-type BAT transplants. The major altered oxylipins between the WT and Fat-1 BAT transplantation were ω-6 arachidonic acid-derived oxylipins via the lipoxygenase pathway. Taken together, these findings suggest an important role of BAT-derived oxylipins in combating obesity-related metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo , Ácidos Grasos Omega-3 , Tejido Adiposo Pardo/metabolismo , Animales , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ratones , Ratones Transgénicos , Oxilipinas/metabolismo
10.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408841

RESUMEN

Post-translational modifications of proteins ensure optimized cellular processes, including proteostasis, regulated signaling, cell survival, and stress adaptation to maintain a balanced homeostatic state. Abnormal post-translational modifications are associated with cellular dysfunction and the occurrence of life-threatening diseases, such as cancer and neurodegenerative diseases. Therefore, some of the frequently seen protein modifications have been used as disease markers, while others are targeted for developing specific therapies. The ubiquitin and ubiquitin-like post-translational modifiers, namely, small ubiquitin-like modifier (SUMO) and neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8), share several features, such as protein structures, enzymatic cascades mediating the conjugation process, and targeted amino acid residues. Alterations in the regulatory mechanisms lead to aberrations in biological processes during tumorigenesis, including the regulation of tumor metabolism, immunological modulation of the tumor microenvironment, and cancer stem cell stemness, besides many more. Novel insights into ubiquitin and ubiquitin-like pathways involved in cancer biology reveal a potential interplay between ubiquitination, SUMOylation, and NEDDylation. This review outlines the current understandings of the regulatory mechanisms and assay capabilities of ubiquitination, SUMOylation, and NEDDylation. It will further highlight the role of ubiquitination, SUMOylation, and NEDDylation in tumorigenesis.


Asunto(s)
Neoplasias , Sumoilación , Carcinogénesis , Humanos , Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Microambiente Tumoral , Ubiquitina/metabolismo , Ubiquitinación
11.
Prostate Cancer Prostatic Dis ; 25(4): 770-777, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35338353

RESUMEN

BACKGROUND: Systemic treatments for prostate cancer (PC) have significant side effects. Thus, newer alternatives with fewer side effects are urgently needed. Animal and human studies suggest the therapeutic potential of low carbohydrate diet (LCD) for PC. To test this possibility, Carbohydrate and Prostate Study 2 (CAPS2) trial was conducted in PC patients with biochemical recurrence (BCR) after local treatment to determine the effect of a 6-month LCD intervention vs. usual care control on PC growth as measured by PSA doubling time (PSADT). We previously reported the LCD intervention led to significant weight loss, higher HDL, and lower triglycerides and HbA1c with a suggested longer PSADT. However, the metabolic basis of these effects are unknown. METHODS: To identify the potential metabolic basis of effects of LCD on PSADT, serum metabolomic analysis was performed using baseline, month 3, and month 6 banked sera to identify the metabolites significantly altered by LCD and that correlated with varying PSADT. RESULTS: LCD increased the serum levels of ketone bodies, glycine and hydroxyisocaproic acid. Reciprocally, LCD reduced the serum levels of alanine, cytidine, asymmetric dimethylarginine (ADMA) and 2-oxobutanoate. As high ADMA level is shown to inhibit nitric oxide (NO) signaling and contribute to various cardiovascular diseases, the ADMA repression under LCD may contribute to the LCD-associated health benefit. Regression analysis of the PSADT revealed a correlation between longer PSADT with higher level of 2-hydroxybutyric acids, ketone bodies, citrate and malate. Longer PSADT was also associated with LCD reduced nicotinamide, fructose-1, 6-biphosphate (FBP) and 2-oxobutanoate. CONCLUSION: These results suggest a potential association of ketogenesis and TCA metabolites with slower PC growth and conversely glycolysis with faster PC growth. The link of high ketone bodies with longer PSADT supports future studies of ketogenic diets to slow PC growth.


Asunto(s)
Neoplasias de la Próstata , Humanos , Masculino , Carbohidratos/uso terapéutico , Dieta Baja en Carbohidratos , Cuerpos Cetónicos/uso terapéutico , Próstata/patología , Antígeno Prostático Específico , Neoplasias de la Próstata/patología
12.
Methods Mol Biol ; 2448: 251-271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35167102

RESUMEN

Brown adipose tissue is a thermogenic organ that possesses anti-diabetic and anti-obesogenic potential. There has recently been growing interest on the secretory role of brown adipose tissue in regulating whole-body metabolism. Several signaling lipids, including 12-HEPE and 12,13-diHOME, have been shown to be secreted by brown adipose tissue and have demonstrated roles in regulating whole-body energy metabolism. Lipidomics platforms that broadly characterize the signaling lipidome can deconvolute the underlying biology of the lipid metabolites having a broad systemic impact on physiology. Herein, we describe how to perform and analyze LC-MS/MS signaling lipidomics on mature brown adipocytes.


Asunto(s)
Lipidómica , Espectrometría de Masas en Tándem , Adipocitos Marrones , Cromatografía Liquida , Metabolismo Energético , Termogénesis
13.
Anal Biochem ; 645: 114604, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35217005

RESUMEN

Low molecular-mass aliphatic carboxylic acids are critically important for intermediate metabolism and may serve as important biomarkers for metabolic homeostasis. Here in, we focused on multiplexed method development of aliphatic carboxylic analytes, including methylsuccinic acid (MSA), ethylmalonic acid (EMA), and glutaric acid (GA). Also assessed was their utility in a population's health as well as metabolic disease screening in both plasma and urine matrices. MSA, EMA, and GA are constitutional isomers of dicarboxylic acid with high polarity and poor ionization efficiency, resulting in such challenges as poor signal intensity and retention, particularly in reversed-phase liquid chromatography with electrospray mass spectrometry (RP-LC-ESI-MS/MS). Derivatization using n-butanol was performed in the sample preparation to enhance the signal intensity accompanied with a positive charge from ionization in complicated biomatrices as well as to improve the separation of these isomers with optimal retention. Fit-for-purpose method validation results demonstrated quantitative ranges for MSA/EMA/GA from 5/10/20 ng/mL to 400 ng/mL in plasma analysis, and 100/200/100 ng/mL to 5000/10000/5000 ng/mL in urine analysis. This validated method demonstrates future utility when exploring population health analysis and biomarker development in metabolic diseases.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Glutaratos , Malonatos , Espectrometría de Masa por Ionización de Electrospray/métodos , Succinatos , Espectrometría de Masas en Tándem/métodos
14.
Sci Rep ; 12(1): 1186, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075163

RESUMEN

Cancer biomarker discovery is critically dependent on the integrity of biofluid and tissue samples acquired from study participants. Multi-omic profiling of candidate protein, lipid, and metabolite biomarkers is confounded by timing and fasting status of sample collection, participant demographics and treatment exposures of the study population. Contamination by hemoglobin, whether caused by hemolysis during sample preparation or underlying red cell fragility, contributes 0-10 g/L of extraneous protein to plasma, serum, and Buffy coat samples and may interfere with biomarker detection and validation. We analyzed 617 plasma, 701 serum, and 657 buffy coat samples from a 7-year longitudinal multi-omic biomarker discovery program evaluating 400+ participants with or at risk for pancreatic cancer, known as Project Survival. Hemolysis was undetectable in 93.1% of plasma and 95.0% of serum samples, whereas only 37.1% of buffy coat samples were free of contamination by hemoglobin. Regression analysis of multi-omic data demonstrated a statistically significant correlation between hemoglobin concentration and the resulting pattern of analyte detection and concentration. Although hemolysis had the greatest impact on identification and quantitation of the proteome, distinct differentials in metabolomics and lipidomics were also observed and correlated with severity. We conclude that quality control is vital to accurate detection of informative molecular differentials using OMIC technologies and that caution must be exercised to minimize the impact of hemolysis as a factor driving false discovery in large cancer biomarker studies.


Asunto(s)
Biomarcadores/sangre , Hemólisis , Lipidómica/normas , Neoplasias Pancreáticas/sangre , Pancreatitis/sangre , Proteómica/normas , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Espectrometría de Masas , Medicina de Precisión
15.
Brain ; 145(2): 569-583, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-34894211

RESUMEN

The identification of intestinal dysbiosis in patients with neurological and psychiatric disorders has highlighted the importance of gut-brain communication, and yet the question regarding the identity of the components responsible for this cross-talk remains open. We previously reported that relapsing remitting multiple sclerosis patients treated with dimethyl fumarate have a prominent depletion of the gut microbiota, thereby suggesting that studying the composition of plasma and CSF samples from these patients may help to identify microbially derived metabolites. We used a functional xenogeneic assay consisting of cultured rat neurons exposed to CSF samples collected from multiple sclerosis patients before and after dimethyl fumarate treatment to assess neurotoxicity and then conducted a metabolomic analysis of plasma and CSF samples to identify metabolites with differential abundance. A weighted correlation network analysis allowed us to identify groups of metabolites, present in plasma and CSF samples, whose abundance correlated with the neurotoxic potential of the CSF. This analysis identified the presence of phenol and indole group metabolites of bacterial origin (e.g. p-cresol sulphate, indoxyl sulphate and N-phenylacetylglutamine) as potentially neurotoxic and decreased by treatment. Chronic exposure of cultured neurons to these metabolites impaired their firing rate and induced axonal damage, independent from mitochondrial dysfunction and oxidative stress, thereby identifying a novel pathway of neurotoxicity. Clinical, radiological and cognitive test metrics were also collected in treated patients at follow-up visits. Improved MRI metrics, disability and cognition were only detected in dimethyl fumarate-treated relapsing remitting multiple sclerosis patients. The levels of the identified metabolites of bacterial origin (p-cresol sulphate, indoxyl sulphate and N-phenylacetylglutamine) were inversely correlated to MRI measurements of cortical volume and directly correlated to the levels of neurofilament light chain, an established biomarker of neurodegeneration. Our data suggest that phenol and indole derivatives from the catabolism of tryptophan and phenylalanine are microbially derived metabolites, which may mediate gut-brain communication and induce neurotoxicity in multiple sclerosis.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Animales , Biomarcadores , Dimetilfumarato/uso terapéutico , Humanos , Indicán , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Fenol , Ratas
16.
J Clin Invest ; 131(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34411004

RESUMEN

BACKGROUNDThe angiotensin-converting enzyme (ACE) D allele is more prevalent among African Americans compared with other races and ethnicities and has previously been associated with severe coronavirus disease 2019 (COVID-19) pathogenesis through excessive ACE1 activity. ACE inhibitors/angiotensin receptor blockers (ACE-I/ARB) may counteract this mechanism, but their association with COVID-19 outcomes has not been specifically tested in the African American population.METHODSWe identified 6218 patients who were admitted into Mount Sinai hospitals with COVID-19 between February 24 and May 31, 2020, in New York City. We evaluated whether the outpatient and in-hospital use of ACE-I/ARB is associated with COVID-19 in-hospital mortality in an African American compared with non-African American population.RESULTSOf the 6218 patients with COVID-19, 1138 (18.3%) were ACE-I/ARB users. In a multivariate logistic regression model, ACE-I/ARB use was independently associated with a reduced risk of in-hospital mortality in the entire population (OR, 0.655; 95% CI, 0.505-0.850; P = 0.001), African American population (OR, 0.44; 95% CI, 0.249-0.779; P = 0.005), and non-African American population (OR, 0.748, 95% CI, 0.553-1.012, P = 0.06). In the African American population, in-hospital use of ACE-I/ARB was associated with improved mortality (OR, 0.378; 95% CI, 0.188-0.766; P = 0.006), whereas outpatient use was not (OR, 0.889; 95% CI, 0.375-2.158; P = 0.812). When analyzing each medication class separately, ARB in-hospital use was significantly associated with reduced in-hospital mortality in the African American population (OR, 0.196; 95% CI, 0.074-0.516; P = 0.001), whereas ACE-I use was not associated with impact on mortality in any population.CONCLUSIONIn-hospital use of ARB was associated with a significant reduction in in-hospital mortality among COVID-19-positive African American patients.FUNDINGNone.


Asunto(s)
Antagonistas de Receptores de Angiotensina/administración & dosificación , Inhibidores de la Enzima Convertidora de Angiotensina/administración & dosificación , Negro o Afroamericano , Tratamiento Farmacológico de COVID-19 , COVID-19 , Mortalidad Hospitalaria/etnología , SARS-CoV-2/metabolismo , Anciano , COVID-19/etnología , COVID-19/metabolismo , COVID-19/mortalidad , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Peptidil-Dipeptidasa A/metabolismo , Estudios Retrospectivos , Tasa de Supervivencia
17.
Sci Rep ; 11(1): 15052, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34302010

RESUMEN

Prostate-specific antigen (PSA) screening for prostate cancer (PCa) is limited by the lack of specificity but is further complicated in the benign prostatic hyperplasia (BPH) population which also exhibit elevated PSA, representing a clear unmet need to distinguish BPH from PCa. Herein, we evaluated the utility of FLNA IP-MRM, age, and prostate volume to stratify men with BPH from those with PCa. Diagnostic performance of the biomarker panel was better than PSA alone in discriminating patients with negative biopsy from those with PCa, as well as those who have had multiple prior biopsies (AUC 0.75 and 0.87 compared to AUC of PSA alone 0.55 and 0.57 for patients who have had single compared to multiple negative biopsies, respectively). Of interest, in patients with PCa, the panel demonstrated improved performance than PSA alone in those with Gleason scores of 5-7 (AUC 0.76 vs. 0.56) and Gleason scores of 8-10 (AUC 0.74 vs. 0.47). With Gleason scores (8-10), the negative predictive value of the panel is 0.97, indicating potential to limit false negatives in aggressive cancers. Together, these data demonstrate the ability of the biomarker panel to perform better than PSA alone in men with BPH, thus preventing unnecessary biopsies.


Asunto(s)
Biomarcadores de Tumor/sangre , Diagnóstico Diferencial , Hiperplasia Prostática/diagnóstico , Neoplasias de la Próstata/diagnóstico , Anciano , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Próstata/metabolismo , Antígeno Prostático Específico/sangre , Hiperplasia Prostática/sangre , Hiperplasia Prostática/patología , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología
18.
Prostate ; 81(10): 618-628, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33949711

RESUMEN

BACKGROUND: Prostate cancer (PC) is the second most lethal cancer for men. For metastatic PC, standard first-line treatment is androgen deprivation therapy (ADT). While effective, ADT has many metabolic side effects. Previously, we found in serum metabolome analysis that ADT reduced androsterone sulfate, 3-hydroxybutyric acid, acyl-carnitines but increased serum glucose. Since ADT reduced ketogenesis, we speculate that low-carbohydrate diets (LCD) may reverse many ADT-induced metabolic abnormalities in animals and humans. METHODS: In a multicenter trial of patients with PC initiating ADT randomized to no diet change (control) or LCD, we previously showed that LCD intervention led to significant weight loss, reduced fat mass, improved insulin resistance, and lipid profiles. To determine whether and how LCD affects ADT-induced metabolic changes, we analyzed serum metabolites after 3-, and 6-months of ADT on LCD versus control. RESULTS: We found androsterone sulfate was most consistently reduced by ADT and was slightly further reduced in the LCD arm. Contrastingly, LCD intervention increased 3-hydroxybutyric acid and various acyl-carnitines, counteracting their reduction during ADT. LCD also reversed the ADT-reduced lactic acid, alanine, and S-adenosyl methionine (SAM), elevating glycolysis metabolites and alanine. While the degree of androsterone reduction by ADT was strongly correlated with glucose and indole-3-carboxaldehyde, LCD disrupted such correlations. CONCLUSIONS: Together, LCD intervention significantly reversed many ADT-induced metabolic changes while slightly enhancing androgen reduction. Future research is needed to confirm these findings and determine whether LCD can mitigate ADT-linked comorbidities and possibly delaying disease progression by further lowering androgens.


Asunto(s)
Antagonistas de Andrógenos/uso terapéutico , Antineoplásicos Hormonales/uso terapéutico , Dieta Baja en Carbohidratos/tendencias , Metabolómica/métodos , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/terapia , Anciano , Antagonistas de Andrógenos/efectos adversos , Androsterona/análogos & derivados , Androsterona/sangre , Antineoplásicos Hormonales/efectos adversos , Humanos , Masculino , Persona de Mediana Edad
19.
Urology ; 157: 85-92, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34010675

RESUMEN

OBJECTIVE: To identify the potential biomarkers of interstitial cystitis/painful bladder syndrome (IC), a chronic syndrome of bladder-centric pain with unknown etiology that has an adverse impact on quality of life, we analyzed the urine and serum metabolomes of a cohort of IC patients and non-disease controls (NC). METHODS: Home collection of serum and urine samples was obtained from 19 IC and 20 NC females in the Veterans Affairs (VA) Health Care System. IC was diagnosed independently by thorough review of medical records using established criteria. Biostatistics and bioinformatics analyses, including univariate analysis, unsupervised clustering, random forest analysis, and metabolite set enrichment analysis (MSEA), were then utilized to identify potential IC biomarkers. RESULTS: Metabolomics profiling revealed distinct expression patterns between NC and IC. Random forest analysis of urine samples suggested discriminators specific to IC; these include phenylalanine, purine, 5-oxoproline, and 5-hydroxyindoleacetic acid. When these urinary metabolomics-based analytes were combined into a single model, the AUC was 0.92, suggesting strong potential clinical value as a diagnostic signature. Serum-based metabolomics did not provide potential IC discriminators. CONCLUSION: Analysis of serum and urine revealed that women with IC have distinct metabolomes, highlighting key metabolic pathways that may provide insight into the pathophysiology of IC. The findings from this pilot study suggest that integrated analyses of urinary metabolites, purine, phenylalanine, 5-oxoproline, and 5-HIAA, can lead to promising IC biomarkers for pathophysiology of IC. Validation of these results using a larger dataset is currently underway.


Asunto(s)
Cistitis Intersticial/sangre , Cistitis Intersticial/orina , Ácido Hidroxiindolacético/orina , Fenilalanina/orina , Purinas/orina , Ácido Pirrolidona Carboxílico/orina , Adulto , Área Bajo la Curva , Biomarcadores/sangre , Biomarcadores/orina , Estudios de Casos y Controles , Cistitis Intersticial/diagnóstico , Femenino , Humanos , Metaboloma , Metabolómica , Persona de Mediana Edad , Proyectos Piloto , Curva ROC
20.
Sci Rep ; 11(1): 5749, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707480

RESUMEN

Reactive oxygen species (ROS) are implicated in triggering cell signalling events and pathways to promote and maintain tumorigenicity. Chemotherapy and radiation can induce ROS to elicit cell death allows for targeting ROS pathways for effective anti-cancer therapeutics. Coenzyme Q10 is a critical cofactor in the electron transport chain with complex biological functions that extend beyond mitochondrial respiration. This study demonstrates that delivery of oxidized Coenzyme Q10 (ubidecarenone) to increase mitochondrial Q-pool is associated with an increase in ROS generation, effectuating anti-cancer effects in a pancreatic cancer model. Consequent activation of cell death was observed in vitro in pancreatic cancer cells, and both human patient-derived organoids and tumour xenografts. The study is a first to demonstrate the effectiveness of oxidized ubidecarenone in targeting mitochondrial function resulting in an anti-cancer effect. Furthermore, these findings support the clinical development of proprietary formulation, BPM31510, for treatment of cancers with high ROS burden with potential sensitivity to ubidecarenone.


Asunto(s)
Apoptosis , Mitocondrias/metabolismo , Neoplasias Pancreáticas/patología , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/análogos & derivados , Animales , Línea Celular Tumoral , Proliferación Celular , Respiración de la Célula , Supervivencia Celular , Complejo II de Transporte de Electrones/metabolismo , Glicerol-3-Fosfato Deshidrogenasa (NAD+) , Humanos , Potencial de la Membrana Mitocondrial , Ratones Desnudos , Organoides/patología , Estrés Oxidativo , Consumo de Oxígeno , Neoplasias Pancreáticas/metabolismo , Especificidad por Sustrato , Ubiquinona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...